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INTRODUCTION type of signal transduction system in bacteria and controls

The discovery of microbes by Antonie van Leeuwenhoeik
(59) was aided by their ability to swim, clearly indicating that
they are living organisms. Not surprisingly the mechanism con-
trolling this behavior has since then been studied extensively.
Arguably, chemotaxis is the best understood of all signal trans-
duction systems that control movement. While the motility
apparatus differs among organisms, the general control mech-
anism is conserved throughout all bacteria and archaea. The
centerpiece of this control mechanism is the “two-component”
system in which phosphorylation of a response regulator re-
flects phosphorylation of a histidine autokinase that senses
environmental parameters (117). This is the most common
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diverse processes such as gene expression, sporulation, and
chemotaxis. In chemotaxis, events at the receptors control au-
tophosphorylation of the CheA histidine kinase, and the phos-
phohistidine is the substrate for the response regulator CheY,
which catalyzes the transfer of the phosphoryl group to a con-
served aspartate (for a recent review, see reference 250). The
resulting CheY-P can interact with the switch mechanism in
the motor (42, 149, 186, 193, 234). This interaction causes a
change in behavior, such as in direction or speed of rotation of
flagella. Thus, for example, in Bacillus subtilis, binding of the
attractant asparagine to the receptor McpB quickly increases
the levels of CheA-P and CheY-P, as the excitation event, and
produces increased counterclockwise (CCW) rotation of the
flagella (265). The receptors undergo adaptation, a feature
that allows the mechanism to reset so that bacteria can
progress up concentration gradients of attractants or down
concentration gradients of repellents (152). In general, the
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FIG. 1. General chemotaxis model. A schematic of the biochemical
processes in the two-component chemotaxis pathway is shown. Hexa-
gons represent response regulator domains. The universal components
are in red; almost universal components are in orange; optional com-
ponents are in yellow.

excitation process is highly conserved and there is considerable
variety in the adaptation process (Fig. 1).

Besides these two core proteins, many other proteins con-
tribute to making the process work. Chemotaxis proteins can
be ordered into four groups—a signal recognition and trans-
duction group, an excitation group, an adaptation group, and a
signal removal group (to dephosphorylate CheY-P). The signal
recognition and transduction group includes the receptors (9,
81, 118) and ligand binding proteins (4, 86), which are capable
of binding effectors outside the cell; a few receptors, however,
are cytoplasmic (92, 93, 229). The signal, i.e., changing con-
centrations of a chemical, is then transduced to the excitation
proteins, CheA and CheY (34, 90). Adaptational proteins alter
CheA activity to reset the system. This can be done either by
influencing CheA activity directly or through the receptors.
Lastly, the signal removal proteins ensure that CheY-P levels
can be adjusted to prestimulus levels quickly (the roles of the
chemtaxis proteins are summarized in Table 1).

All biochemical processes described here were first discov-
ered in the enteric bacteria Escherichia coli and Salmonella
enterica serovar Typhimurium. Fortunately, the enteric chemo-
taxis system turned out to be comparatively simple. Since then,
chemotaxis in many diverse organisms has been studied and
many, often complex, variations have been found. This review
aims to summarize and compare the different chemotactic sys-
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tems that have been studied to date. The main focus is not E.
coli chemotaxis, since many review articles have dealt with its
chemotaxis, but Bacillus subtilis, which is arguably the second
best understood chemotactic bacterium. Other than cheZ, it
possesses at least one copy of each chemotaxis protein found to
date (although some fusions of chemotaxis proteins exist that
are not found in B. subtilis).

As will become apparent, the chemotaxis mechanism in B.
subtilis is probably close to that of the ancestral organism from
which the bacteria and archaea descended, so that understand-
ing this mechanism should provide considerable insights into
mechanisms used in the diverse species of motile bacteria and
archaea alive today. To appreciate the divergence in chemo-
taxis, we tried to include in this review some information about
at least one representative of each phylum of bacteria and
archaea in which a CheA homolog could be found, indicating
the existence of a chemotaxis pathway. Of course, many or-
ganisms have not yet been studied in detail, and the available
information is often based only on the genomic sequence of
those organisms. We have made a special effort to include
information about organisms whose chemotaxis mechanism
appears to diverge from the E. coli paradigm. Other reviews,
most of which emphasize the E. coli mechanism, include ref-
erences 13, 39, 61, 224, and 227. The review by Berg (20) does
justice to the rather considerable literature dating from the late
19th and early 20th centuries.

SIGNAL RECOGNITION AND TRANSDUCTION

Receptors

Understanding how receptors control the CheA kinase is at
the heart of understanding chemotaxis. In E. coli, binding of
attractant inhibits the CheA kinase (34), whereas in B. subtilis,
binding of attractant stimulates the CheA kinase (64, 67). It is
important to understand the structure of receptors and how
binding of attractant (or repellent) changes the activity of the
associated CheA kinase.

Classes of receptors. The receptors are usually transmem-
brane proteins with an extramembrane sensing domain that
binds attractant across the dimeric interface (253), two trans-
membrane (TM) regions (TM1, between the N terminus and
the sensory region, and TM2, between the sensory region and
the cytoplasmic regions), and several cytoplasmic regions.
These include the signaling region, where the CheA kinase and
the CheW coupling protein and analogs bind, and the meth-
ylation region, where methylation/demethylation of the recep-
tors occurs to compensate for changes in CheA kinase activity
caused by binding attractant (Fig. 2). The enzymes catalyzing
these reactions, the CheR methyltransferase and the CheB
methylesterase, are described below. Between the methylation
region and the membrane is the HAMP (histidine kinase,
adenylyl cyclase, methyl-accepting chemotaxis protein, and
phosphatase) linker, which conveys the signal of attractant
binding to the rest of the cytoplasmic region (see below).
Based on crystal structures of the extramembrane N-terminal
part of Tar, the aspartate receptor of E. coli, and of the cyto-
plasmic C-terminal part of Tsr, the serine receptor, virtually
the entire receptor is thought to consist mainly of a-helix (51,
108, 109).
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Protein by category

Activity or role

Comment

Where found

References

Signal recognition and
transduction

Methyl-accepting chemotaxis
proteins (MCPs)

CheD

Ligand binding proteins
Excitation

CheA

CheW

CheY
Adaptation
CheR

CheB

CheV
Signal removal
CheC

CheX

CheZ
FliY

CheY*

Receptors

Glutamine
deamidase

Ligand recognition

Histidine kinase

Coupling protein

Response
regulator

Methyl transferase

Methyl esterase

Coupling and
adaptational
protein

Phosphatase and
adaptational
protein

Probable
phosphatase

Phosphatase
Phosphatase at the

flagellar switch

Phosphate sink

Binds chemoeffectors and transduces
signal to CheA. Is methylated and
demethylated on glutamate
residues.

Role in receptor maturation by
deamidation of particular
glutamine residues

Binds chemoeffectors and transduces
signal to the receptors.

Autophosphorylates on histidine
residue; substrate for CheY and
other response regulators.

Couples CheA to the receptors.

Primary response regulator. Interacts
with the motility apparatus to
induce change of swimming
behavior when phosphorylated.

Methylates glutamate residues on
MCPs; role in adaptation.

Hydrolyzes methyl glutamate
residues on MCPs; role in
adaptation. Usually has response
regulator domain.

Couples CheA to the receptors;
response regulator domain can be
phosphorylated; role in
adaptation.

Hydrolyzes CheY-P; also probable
role in adaptation.

Homologous to CheC, probably has
the same function.

Hydrolyzes CheY-P.

N terminus homologous to CheC;
hydrolyzes CheY-P; integral part
of the flagellar switch.

Alternative CheY that lowers
primary CheY-P levels by acting
as a phosphate sink.

Universal among all chemotactic
bacteria and archaea

All chemotactic archaea, gram-
positive bacteria, Thermatoga,
and some proteobacteria

E. coli, not yet known for other
organisms

Universal among all chemotactic
bacteria and archaea

Universal among all chemotactic
bacteria and archaea
Universal among all chemotactic
bacteria and archaea

Almost universal among
chemotactic bacteria and
archaea (exception, H. pylori)
Almost universal among
chemotactic bacteria and
archaea (exception, H. pylori)

Many bacteria including the E.
coli close relative S. enterica
serovar Typhimurium; however
not in the archaea or E. coli

All chemotactic archaea, gram-
positive bacteria, Thermatoga,
and some proteobacteria

The spirochetes, some archaea,
some gram-positive bacteria,
Thermatoga, and some
proteobacteria

The B- and y-proteobacteria

The gram-positive bacteria,
some spirochetes, and
Thermatoga

The a-proteobacteria, possibly
others

9, 33, 46, 56, 75, 104, 109,
110, 118, 119, 128, 148,
171, 179, 197, 199, 208,
213, 215, 229, 237, 241,
243, 245, 247, 264, 265

67,122, 182

1,3, 4, 24, 28, 36, 40, 53
65, 85, 86, 88, 118, 141,
157, 158, 165, 166, 256,
266

23, 33, 64, 67, 70, 90, 137,
151, 156, 185, 218, 233,
264

37,70, 78-80, 131, 144,
187

16, 25, 26, 35, 49, 209,

211, 218, 244, 259

47, 48, 116, 182, 214, 264,
265

10, 45, 57, 73, 74, 90, 102,
103, 106, 108, 113, 115,
130, 134, 145, 160, 217,

219, 220, 226, 264
63, 99, 181

112, 182, 183, 190

69, 77, 137

29-32, 43, 49, 90, 146,

188, 189, 195, 223, 257,
261

26, 95, 112, 234

172, 191, 196, 212

Le Moual and Koshland (124) showed that the chemotaxis
receptors in the bacteria and archaea fell into three classes,
based on the presence or absence of two pairs of insertions
(called “indels,” for insertions/deletions) of 14 amino acids
(four turns of the a-helix). The class III receptors are likely to
be the ancestral receptors (124). The locations of these pairs in
B. subtilis McpB are illustrated in Fig. 2. They lie on the
membrane-proximal side of the signaling regions and methyl-
ation regions. The class III receptors have both pairs, the class
II receptors have only the pair between the signaling and
methylation regions, and the class I receptors have neither.
More recent analysis of sequences in the database (Fig. 3) gives
some additional perspective. The original receptors are obvi-
ously the class III receptors, but they have undergone modifi-
cations early in the lines of descent. One modification, which
presumably occurred after the gram-positive bacterial line had

diverged from the original line and before the proteobacterial
line had diverged, was the deletion of the first and fourth indels
to produce the class II receptors. The class I receptors,
which involve deletion of indels 2 and 3, may have arisen
several times, once during formation of the a-proteobacte-
rial line (see Rhodobacter sphaeroides), once during forma-
tion of the &-proteobacterial line (see Myxococcus xanthus),
once during formation of the B-proteobacterial line (see
Ralstonia solanacearum), and once after the y-line had been
formed (see E. coli and Pseudomonas aeroginosa) (Fig. 3).
Alternatively, and more probably, the class I receptors may
have arisen fewer times and, early during the evolution of a
particular line of descent, may have entered by gene transfer
and displaced the original receptors. One obvious case of
gene transfer is in Clostridium acetobutylicum, a gram-posi-
tive bacterium having 38 class III receptors (all the rest of
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FIG. 2. Schematic of the three classes of chemotaxis receptors. Shown is a representative dimer for each class of chemotaxis receptors.
Insertion/deletion regions (indels) are shaded in dark gray. Stars indicate sites of methylation for (from left to right) E. coli Tar, M. xanthus FrzCD,

and B. subtilis McpB.

the gram-positive bacterial receptors are class III) and one
class I receptor (Fig. 3). The receptors in the spirochete
Borrelia burgdorferi, here termed class O, are a special case:
these receptors are missing indels 1 and 4 but are missing
pairs of 21 amino acids where the loss of indels 2 and 3
would produce a loss of only a pair of 14 amino acids.

HAMP domain. As implied above, the HAMP domain or
linker is found in a number of different types of proteins.
Although there is little sequence identity among HAMP do-
mains, they generally have two segments of hydrophobic ami-
noacyl residues in a heptameric arrangement characteristic of
amphipathic a-helices joined by unstructured amino acids (11,
12). The o-helices are probably in a coiled coil (206). The
purpose of HAMP domains is generally to convey signals from
input domains to output modules. Mutations in the E. coli
receptor Tsr HAMP domain caused locked signal output (that
is, persistently clockwise [CW] or CCW or in between, but
switching rarely) (8).

Methylation of class I and III receptors. Considerable work
has been done on McpB from B. subtilis, which might be
considered a prototype for the class III receptors. The first
difference noticed between the class I and III receptors was
that methanol was released in response to all stimuli in B.
subtilis (111, 240) and Halobacterium salinarum (163, 216)
whereas it was released from E. coli, the prototype organism
for class I receptors, only after the application of negative

stimuli; methanol evolution in this species was suppressed be-
low background levels after the application of positive stimuli
(105, 241, 242). Interestingly, methanol is released from the
class I receptors of R. spheroides on addition of attractant
(which, as in E. coli, inhibits CheA [196]) (145). There is no
consequence on methanol formation of removing the attract-
ant. However, as described below, this organism has multiple
copies of chemotaxis genes. The principal methyltransferase
appears to be CheR2; deletion of cheRI causes methanol to be
produced after both addition and removal of attractant (145).
The related organism, Rhodospirillum centenum, however, be-
haved as might have been anticipated from the E. coli prece-
dent: a reduction of light intensity, which would cause inhibi-
tion of the CheA, caused methanol formation, and increase of
light intensity did not (97).

What is the reason for this difference in methanol forma-
tion? In E. coli, methylation of receptors increases CheA ki-
nase activity, an adaptational mechanism to compensate for
the decreased activity caused by attractant, and it does not
appear to matter which sites become methylated (106, 197,
238). By contrast, each of the sites in McpB, the one class III
receptor that has been characterized in some detail, appear to
have a different function. Glu630 is demethylated both after
addition and removal of attractant (265) (provided that this
site is in the methylated form). When it is changed to Asp630,
which cannot be methylated (198), the resulting mutant has a
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FIG. 3. Phylogenetic tree of chemotactic bacteria and archaea. The phylogenetic tree was generated from the 16S rRNA sequences by using
the programs CLUSTALW and DRAWTREE. Included is information regarding the number and class of chemoreceptors for each respective
organism. ND, not determined. Organisms, by phylum, are as follows: Archaea: Archaeoglobus fulgidus, Halobacterium salinarum, Methanosarcina
mazei, and Pyrococcus abyssi; Thermotogales: Thermotoga maritima; spirochetes: Borrelia burgdorferi, Leptospira interrogans, and Treponema
pallidum; cyanobacteria: Nostoc and Synechocystis spp.; gram-positive bacteria: Bacillus subtilis, Clostridium acetobutylicum, Listeria innocua, and
Thermoanaerobacter tengcongensis; proteobacteria (a-subgroup): Rhodobacter sphaeroides and Sinorizhobium meliloti; proteobacteria (3-subgroup):
Ralstonia solanacearum; proteobacteria (3-subgroup): Myxococcus xanthus; proteobacteria (e-subgroup): Helicobacter pylori; proteobacteria (vy-

subgroup): Escherichia coli, Pseudomonas aeroginosa, and Vibrio cholerae.

low prestimulus bias; when attractant is added, it adapts only to
the higher wild-type bias, and when attractant is removed, it
hardly adapts at all (265). Glu637 seems crucial for causing
adaptation to attractants, and only on removal of attractants
does methanol evolve from that site (provided that this site is
in the methylated form). Glu371 (encoded as GIn371 but de-
amidated (probably by CheD [see below]) does not play a role
during adaptation to addition or removal of attractant but may
in some way be involved in being a regulator of methylation,
since an mcpB Q371A mutant shows poor taxis to high con-
centrations of asparagine, similar to a cheB mutant (see below)
(M. A. Zimmer and G. W. Ordal, unpublished data). Methanol
arises from Glu371 only on addition of attractant (provided
that this site is in the methylated form). Thus, in B. subtilis,
each of the positions from which methanol arises has a differ-
ent function, and these functions, in the case of McpB (as
stated above), cause methanol production from Gln(Glu)371
and Glu630 on addition of attractant and from Glu630 and
Glu637 on removal (provided that these sites are in the meth-
ylated form). The extent to which this rule about particular
sites having particular functions applies generally is not known;
further experiments are required, and one obvious organism
with which to explore this question would be R. spheroides (see
previous paragraph). In any case, what had seemed until now
the general rule that class III receptors produce methanol in
response to all stimuli and class I receptors do so only in
response to negative stimuli does not appear to be true (the

case of R. spheroides contradicts this rule). No work of this type
has been done for any class II receptors.

Structure of receptors. The E. coli receptors are stable
dimers (153) arranged as trimers of dimers (9). The B. subtilis
receptors are also similarly arranged, and, in fact, the trimers
of dimers themselves interact near the outer part of the cyto-
plasmic membrane (46), as predicted by Kim et al. (110). X-ray
structures of the extramembrane ligand binding domain of the
E. coli receptor Tar (194) and the cytoplasmic domain of the E.
coli receptor Tsr (109) are available, as well as of the ligand
binding domain of the soluble, cytoplasmic B. subtilis receptor
HemAT, in the presence and absence of the natural ligand O,.
The dimer that binds O, (the form that stimulates the CheA
kinase) is very symmetrical, and the dimer that is free of O,
shows a distinct conformational change in the Tyr70 of one of
the two subunits of the dimer (254, 255). As described in detail
below, the CheR methyltransferase and the CheB methyles-
terase appear to be especially active on receptors that have just
bound or released attractant and before the compensating
methylation changes have occurred that would help bring
about adaptation. The structural basis of this conformation of
increased susceptibility is still unknown (45).

Effect of attractant on structure. One longstanding question
has been how attractant induces the receptors to change CheA
kinase activity. In E. coli, attractant causes diminished CheA
activity (35). Based on evidence from work on Cys-substituted
receptors, whose cross-linking is accelerated by oxidant, there
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appears to be “downward piston” movement of TM2 of one
monomer of the receptor dimer (50, 94, 123). Based on exper-
iments where the nitroxide spin label was attached to Cys
residues in Cys-substituted receptors, the extent of movement
was deduced to be small, only about 1 A (171). The effect of
repellent on these receptors and the effect of attractant or
repellent on class III receptors, such as McpB of B. subtilis,
where attractant activates rather than inhibits the receptor
(67), is unknown.

Maturation by CheD. CheD is a deamidase that deamidates
particular glutamines in the B. subtilis receptors (122), a func-
tion carried out by CheB in E. coli. Most chemotactic bacteria
and archaea carry cheD. Therefore CheD is probably the an-
cestral mechanism of glutamine deamidation. The role of this
function is not yet fully understood. However without CheD
the receptors are undermethylated and activate the kinase
poorly, indicating that deamidation is necessary for activation
of the receptors (67, 182).

Binding proteins. Although in most instances chemoeffec-
tors are thought to interact directly with the receptors, in some
particular instances, specifically dedicated binding proteins
bind the chemoeffector and the complex then binds the recep-
tor. Thus, in E. coli, galactose binds to the galactose binding
protein (86), ribose binds to the ribose binding protein (4), and
the complex binds to the receptor Trg (83, 87). Maltose binds
to the maltose binding protein (85), and the complex binds to
the aspartate chemoreceptor Tar (176). It is suspected that the
B. subtilis receptor McpC binds attractants indirectly, via bind-
ing proteins, since it mediates taxis to all amino acids except
asparagine, some (such as proline and alanine) at very low
concentrations (159, 168); however, no mutants in any such
putative binding proteins have been identified.

Oxygen sensing. The oxygen sensor in B. subtilis is HemAT,
which is homologous to myoglobin (92, 93). It is similar to the
repellent oxygen sensor, also termed HemAT, in the archeon
H. salinarum. It is a soluble receptor, having no transmem-
brane region, and hence senses the internal oxygen concentra-
tion. H. salinarum has another receptor for oxygen as an at-
tractant. However, this receptor is homologous to cytochrome
oxidase of mitochondria (44) and has six membrane-spanning
regions and may be a heme protein that also senses oxygen
directly. Conversely, Aer, the oxygen sensor of E. coli, binds
flavin adenine dinucleotide (FAD) (21, 22, 177), and the signal
caused by changing oxygen concentrations is probably medi-
ated by changes in the level of reduction/oxidation of this FAD
(21, 177, 235, 236), a process involving a PAS domain in the
receptor (178). Pseudomonas putida would appear to use the
same mechanism (161). Tsr in E. coli also mediates oxygen
taxis, perhaps by sensing changes in the proton motive force
across the cytoplasmic membrane (177, 204) but certainly not
by binding oxygen directly (Fig. 4).

Many other organisms perform aerotaxis (reviewed in ref-
erence 236). Azospirillum brasilense, an a-proteobacterium, ac-
cumulates in an oxygen gradient at 3 to 5 uM. At both lower
and high oxygen tensions, the proton motive force is lower, so
that it is assumed that both positive and negative aerotaxis,
which causes accmulation of bacteria at the optimum oxygen
tension, is due to sensing of changes in the proton motive force
(262). R. sphaeroides also accumulates at an optimum oxygen
concentration. It shows negative aerotaxis due to interaction
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between the chemotaxis machinery and the Prr system, which
monitors electron flow through the alternative high-affinity
cytochrome oxidase, cbb, and positive aerotaxis by interaction
with another, unknown sensor, both of which may operate
through one of the chemotaxis kinases of the cell, CheA, (180).
Some species, for example Sinorhizobium meliloti, do not seem
to respond to oxygen in the same way that E. coli and B. subtilis
do (by modulating the frequency of CCW versus CW rotation)
but, rather, change their swimming speed in response to oxy-
gen gradients (263).

Phosphotransferase System

The phosphotransferase system (PTS) helps mediate taxis to
a number of sugars and sugar alcohols in B. subtilis (68, 121,
169). Transport is required, but metabolism is not. Unlike taxis
to PTS sugars in E. coli, which does not require a specific
receptor and works even when the methylation system is inac-
tivated by mutation (162) (but works poorly unless some re-
ceptor is present [136]), chemotaxis to PTS substrates in B.
subtilis requires the C-terminal part of McpC (Fig. 5). In these
experiments, chimeras between the asparagine receptor McpB
and the proline receptor McpC revealed that the N-terminal,
extramembrane part of the receptors mediated amino acid
taxis, as expected, but only the C-terminal part of McpC could
mediate taxis to PTS substrates and, in particular, the methyl-
ation region appeared to be involved. The data were best
interpreted by a model in which unphosphorylated enzyme I
interacted with McpC to bring about increased CheA activity
and adaptation occurred through the normal means (121).
Indeed, methanol was produced on addition of glucose, a sign
that CheB was stimulated to help bring about adaptation (239).
In E. coli, since unphosphorylated enzyme I interacts with
CheA (135), it is suspected that interaction of CheA with
unphosphorylated enzyme I inhibits CheA. Large changes in
the levels of unphosphorylated enzyme I compared with phos-
phorylated enzyme I occur during chemotactic excitation
(136). It would seem likely that the requirement for receptor
found by Lux et al. (136) might be due to the inherent low
activity of CheA in the absence of receptors (34) rather than
the interaction with a specific receptor, as found for B. subtilis.

EXCITATION

With the exeption of Mycoplasma gliding motility, it appears
that bacterial and archaeal motility is universely controlled by
the two-component system of the CheA kinase and the CheY
response regulator.

CheA Kinase

The central enzyme that mediates input, usually as sensed by
the receptors, and creates an appropriate signal for the motor
is the CheA kinase. Attractants inhibit it in E. coli (34), S.
meliloti (192), and R. spheroides (196) and stimulate it in B.
subtilis (67). As described in “CheY response regulator” (be-
low), it is likely that for the archaea and the spirochetes, pos-
itive stimuli (for instance, chemoattractants or attractant light),
decrease CheA activity. Thus, B. subtilis would appear to be the
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FIG. 4. Aerotaxis receptors. Shown is a schematic of the four known types of aerotaxis receptors. Indirect aerotaxis defines receptors that detect
oxygen levels by the proton motive force or redox state of the cell. Direct aerotaxis defines receptors that detect levels directly by interacting with

oxygen. Black diamonds represent the indicated receptor cofactors.

exception to this rather incompletely verified hypothesis that
positive stimuli decrease CheA activity.

On activation, CheA becomes phosphorylated on a particu-
lar histidine residue (His46 in B. subtilis and His48 in E. coli
[258]). CheA has five domains (described in detail in reference
23), and this His residue is located within the first, P1 or Hpt,
domain (156). The fourth (P4) domain is where ATP binds and
catalysis occurs. The third (P3) domain is the dimerization
domain, important since CheA is a dimer that transphospho-
rylates (232) (the P4 region of one monomer phosphorylates a
His residue in the P1 domain of the other monomer). The P5
domain is where CheA contacts the receptors and the coupling
protein, CheW. The P2 domain is where CheY and CheB,
which receive phosphoryl groups from CheA-P, dock (23, 89,
233). The exact mechanism of CheA autophosphorylation is
not yet known; however, several conserved regions within the
P4 domain—the N-box, Gl-box, F-box, G2 box, and GT-
block—are essential for catalysis in E. coli and are thought to
be involved in positioning of ATP into the active site (Fig. 6)
(91).

CheA-P from B. subtilis differs from its E. coli counterpart in

being of considerably lower energy (K., = 1.2 X 10* instead of
1in the reaction CheA + ATP — CheA-P + ADP) (66). When
E. coli becomes somewhat deenergized, it becomes smooth
swimming (107), since CheA cannot be phosphorylated, and
thus the bacterium has a larger “diffusion constant” so that it
will leave the local environment by rapid translational move-
ment. However, when B. subtilis becomes somewhat deener-
gized, the chemotaxis system still functions. Thus, the bacteria
do not become tumbly (the condition in the absence of CheY-P
[27]) and thus unable to move away from the unfavorable
environment but instead use chemotaxis to depart, a much
more effective process than unregulated smooth swimming. In
terms of phylogeny, CheA from B. subtilis clusters with CheAs
from archaea and spirochetes, apart from CheAs of the pro-
teobacteria (2).

Coupling to receptors. CheA is coupled to the receptors via
CheW. CheW is present in all bacteria that have chemotaxis or
phototaxis receptors. A second protein, CheV, which is a
CheW-CheY fusion protein, is also capable of coupling the
kinase to the receptors and is described below. CheV is present
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in many eubacteria, including S. enterica serovar Typhimurium,
a close relative of E. coli, but not in E. coli and not in any
archaea. In E. coli, CheW is required for activation of CheA
but not for its inhibition (7, 35). CheW is homologous to the PS5
or regulator domain of CheA (23).

CheY Response Regulator

The primary response regulator that governs the direction of
flagellar rotation is CheY-P (16, 25, 90) and, as implied above,
it causes CCW flagellar rotation in B. subtilis and CW flagellar
rotation in E. coli. It catalizes its own phosphorylation on a

conserved aspartate residue by using CheA-P as a substrate.
This process is thought to involve several conserved residues—
two aspartates, which position an essential Mg>* ion, a lysine,
and a threonine (Fig. 6) (132, 244, 260). In flagellated bacteria,
CheY-P interacts with FliM, shown for E. coli (248) and B.
subtilis (26, 234). In the spirochete Treponema denticola, mu-
tation of cheA blocked chemotaxis and caused the bacteria to
have few reversals of motion (137), implying that CheY-P
causes reversals of motion. To achieve this, it probably binds to
FliM, which is present in the spirochetes. The archeon H.
salinarum similarly showed no reversals of motion when cheA
or cheY was deleted and, indeed, showed preferential forward
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swimming (chronic CW rotation of the flagella at each end of
the archeon) (184). Thus, in this organism, CheY-P also causes
reversals of motion and is required for CCW rotation of the
flagella. (Note: these are right-handed flagella [5], not the
more common left-handed flagella [139] found in E. coli and B.
subtilis, and the flagella themselves are more similar to type IV
pili [52] than to the flagella of bacteria.) There are no FliM
homologs in the archaea, and the site of the interaction of
CheY-P to control the direction of flagellar rotation is un-
known. The implication of these findings is that the flagella of
Halobacterium and spirochetes have a default direction of ro-
tation in the absence of CheY-P, as do the flagella in the
peritrichous bacteria like E. coli and B. subtilis, and that
CheY-P not only facilitates rotation in the opposite direction
but also facilitates switching between the two directions. How
this might occur is mentioned below (see “CheC dephospho-
rylating and adaptational protein”).

Signal Amplification

Binding of one or two receptors by attractant can lead to a
behavioral response in B. subtilis (113) and E. coli (195). Using
photoreleased aspartate, Jasuja et al. (96) found that nanomo-
lar asparate (1.2 pM Kp,) could evoke a response and that the
response times were proportional to changes in receptor oc-
cupany near the threshold, irrespective of prior occupancy.
(Therefore, adaptation is complete.) In experiments with E.
coli, using fluorescence resonance energy transfer to measure
CheY-P levels (rather than CCW/CW rotation, which is a
complex function of CheY-P levels), Sourjik and Berg (210)
found that the cheB mutant was very insensitive to attractant
compared to both the wild type and a cheR mutant. Using
photoreleased asparate, Kim et al. (108) also found that the
cheB mutant was far less sensitive than was the wild type. Both
groups found that absence of CheZ, which catalyzes the de-
phosphorylation of CheY-P, had little effect on amplification;
therefore, accelerated loss of CheY-P is not the cause of signal
amplification; it must be sought in signal generation. How
CheB might be involved in this is described in “CheB methyl-

esterase” (below). Besides this, it seems likely that organiza-
tion of the receptors into a lattice could lead to amplification;
in this arrangement, judicious methylation of receptors to in-
crease CheA activity (after reduction of activity from attractant
[in E. coli]) would allow this amplification to occur over a
broad range of attractant concentrations (201, 202). However,
it would appear that this alleged lattice quickly forms and
disappears, according to circumstances (see “Localization of
chemotaxis proteins,” below).

ADAPTATION

To sense ever higher concentrations of attractant and to
move toward favorable environments, chemotaxis systems have
to be able to adapt to existing stimuli. Additionally, the nature
of bacterial motion requires the ability to recognize when the
bacterium is moving in the wrong direction, i.e., away from
higher attractant concentrations. To do that, a “memory” is
required that is able to indicate whether higher or lower con-
centrations are being reached (120). This is achieved by the
adaptational mechanisms. The methylation system of CheR
and CheB is the only adaptational mechanism in E. coli that
has been studied, although another, undescribed mechanism
may exist (162, 228). However, other organisms, e.g., B. subtilis,
have at least partly characterized adaptational systems,
namely, CheV and CheC (Fig. 7), in addition to the mechanism
involving CheR and CheB (99, 112).

Methylation

CheR methyltransferase. CheR methyltransferase transfers
methyl groups from S-adenosylmethionine to particular gluta-
mate residues (102, 164, 238) on the receptors (82, 164), with
production of S-adenosylhomocysteine (47, 48, 214). In B. sub-
tilis, it is required for adaptation to repellents. In its absence, B.
subtilis is very tumbly (with predominantly CW rotation of the
flagella) (116). In E. coli, it is required for adaptation to at-
tractants (76, 119) and binds both to a flexible tether at the
C-terminal end of the receptor and to the methylation region
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of the same or a nearby receptor and so moves through a
receptor cluster in a hand-over-hand fashion (58, 127, 252).
This property, as might be expected, allows CheR bound to
one receptor to methylate another (125, 126, 129), and recep-
tors lacking the C-terminal binding site are poorly methylated
unless receptors containing it are present in the same cell (19).
The properties of E. coli CheR and B. subtilis CheR are likely
to be similar since receptors of either organism can be meth-
ylated by CheR from either organism (47). CheR is present in
virtually all bacteria and archaea showing chemotaxis, since it
is important for adaptation; the exception is Helicobacter pylori,
which has CheV, whose phosphorlation, as described below, is
known to help bring about adaptation in B. subtilis (99).

CheB methylesterase. Unlike CheR, CheB is usually regu-
lated; it has an N-terminal response regulator domain, subject
to phosphorylation, and a C-terminal enzymatic domain (57,
90, 134, 221). The E. coli enzyme is 10-fold more active when
phosphorylated (134). The B. subtilis enzyme can satisfy the
requirement for methylesterase for chemotaxis in E. coli (115),
and, in vitro, both enzymes were able to demethylate both B.
subtilis and E. coli receptors (160). One interesting possible
difference is that CheB deamidates particular E. coli receptors,
after which the site can be methylated and demethylated (102).
In the instances where B. subtilis receptors are deamidated (for
instances where the reaction has been characterized), this re-
action is catalyzed by CheD, not by CheB (122). Perhaps, then,
it is not surprising that the B. subtilis CheB appears to be more
closely related to CheB in the archaea, which have CheD and
class III receptors, than to CheB in most bacteria, some of
which lack CheD and, in the case of the proteobacteria, have
class I and class II receptors (2).

The isolated enzymatic domain of CheB catalyzes receptor
demethylation in B. subtilis (45) and in E. coli (134), although
not as effectively as does the phosphorylated whole enzyme
(10, 57). However, in B. subtilis, a truncated cheB encoding the

while the means of CheC activation and adaptational action are not yet
proteins are hatched; excitatory proteins are shaded.

enzymatic domain complements a null cheB mutant, and this
strain (null cheB mutant having truncated cheB on a plasmid)
releases enhanced levels of methanol on both addition and
removal of attractant. This result implies that the demethyl-
ation reaction involves primarily the existence of a suitable
substrate. The value of phosphorylation of CheB would then
be to increase the rate of receptor demethylation and thus
speed up adaptation and to minimize unnecessary receptor
demethylation, since loss of a methyl group is equivalent to
hydrolyzing 11 to 14 ATP molecules to ADP and P; (45, 225).
Interestingly, CheB from Campylobacter jejuni lacks a response
regulator domain (142). It is assumed that the time during
which enhanced methanol formation occurs is the time be-
tween addition or removal of attractant and the resulting com-
pensating (to bring about adaptation) methylation events on
the receptor. This particular susceptible conformation does not
require the coupling proteins CheW or CheV for events after
the addition of attractant but does require them for events
after the removal of attractant (45). The fact that the receptors
that have bound attractant are more susceptible to methyles-
terase was shown in vitro many years ago (160).

The methylation system, involving CheR and CheB, is im-
portant for chemotaxis to high concentrations of attractant and
only peripherally for chemotaxis to low concentrations of at-
tractant in B. subtilis (113, 115). The reason is thought to be
that at low concentrations of attractant, signal amplification
occurs since binding attractant to a receptor activates neigh-
boring receptors (203). At high concentrations of attractant,
without CheB to generate charge-charge repulsion, there are
no available free receptors that can activate the kinase on
binding attractant (113). At low concentrations of attractant,
methylation-independent systems suffice to bring about adap-
tation, such as the CheV system (see below). Thus, it may not
be surprising that the amount of methanol evolved increases
exponentially with receptor occupancy by attractant (111).
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CheB may play another role as well. Under certain condi-
tions, it appears to be required for a response to removal of
attractants (113), and the first characterized cheB (then termed
cheL) mutant (OI1130) was tumbly and unresponsive to stim-
uli (167). The implication is that this mutant CheB prevents
normal functioning of the receptor-CheA complex. No similar
mutants have been characterized in other organisms, such as E.
coli, but absence of CheB results in an E. coli strain that is far
less sensitive to the addition of attractant than is the wild type
(108, 210), as described in more detail in “Signal amplification”
(above). As stated above, attractants inhibit CheA in E. coli;
this experiment implies that CheB is needed to amplify the
process leading to low CheA-P and thus CheY-P levels (18).
One way of achieving this is to inactivate the CheA associated
with a receptor complex and have CheB molecules, which
undergo very rapid autodephosphorylation (90), diffuse to
neighboring complexes and inactivate them.

Methylation-Independent Adaptation

CheV adaptational and coupling protein. CheV has two
domains, a N-terminal domain homologous to CheW and a
response regulator C-terminal domain (63), and can substitute
for CheW in coupling receptors to CheA in B. subtilis (181).
Insight into its function has come from experiments using a
mutant in which the phosphorylated aspartatyl residue was
replaced with an alanyl residue (CheV D2354 strain) and the
whole response regulator domain was deleted. Both mutant
strains showed poor adaptation to the addition of attractants,
a result implying that the purpose of CheV phosphorylation is
to bring about adaptation (99). Interestingly, mutants lacking
cheV altogether did adapt normally in the tethered-cell assay.
Thus, it would appear that the conformation of the coupling
(“CheW?”) domain of CheV is such as to strongly favor recep-
tors bound with attractant in the conformation to activate
CheA, since other adaptation systems like the methylation
system are unable to restore the prestimulus bias. Since the
CheV D235A4 strain adapts poorly, it would seem that adapta-
tion requires phosphorylation of D235, probably so that the
regulator domain can interact with the coupling domain to
affect the conformation of the coupling domain and allow the
attractant-bound receptors to reassume their prestimulus
conformation.

CheV may be the only adaptation system in H. pylori, since
CheR and CheB are absent. However, there are three CheVs,
of which only CheV1 appeared to be required for chemotaxis,
and none could substitute for CheW (172).

CheC dephosphorylating and adaptational protein. As men-
tioned below CheC has CheY-P hydrolyzing activity (234a).
However it is hard to explain the tethered cell phenotype of a
B. subtilis AcheC mutant, other than by assuming that it also
plays a role in adaptation. While the prestimulus rotational
bias of AcheC is approximately that of the wild type, cells do
not adapt to the addition of attractant (112, 182). This can be
explained by the presence of persistently elevated CheA-P
levels. CheC was shown to bind to McpB and CheA and so
might either directly or indirectly influence CheA activity
(112).

In addition, mutants with mutations in cheC have a lower
frequency of switching the direction of rotation (from CCW to
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CW and from CW to CCW), implying that CheC lowers the
energy of transition of switching (thus, the wild type, which has
CheC, has a higher switching frequency than does the cheC
mutant). Mutants with mutations in cheB have the opposite
phenotype, an increased frequency of switching (190). It is
hard to imagine that CheB binds to the switch but not so
far-fetched to imagine that CheC does, since it is homologous
to most of the FliM and FliY proteins (two of the three pro-
teins comprising the switch). The state of two proteins being
homologous does not necessarily imply that they bind each
other; however, such binding does occur, for instance between
CheA and CheW, the P5 domain of CheA being homologous
to CheW (see above). These results can be accounted for by
assuming that CheC has minimal affinity for overmethylated
receptors so that in a cheB mutant, there would be more CheC
bound at the switch. Very interestingly, a cheB mutant of H.
salinarum shows increased frequency of reversals, with no ef-
fect on the ratio of CW and CCW rotation of the flagella,
compared with the wild type (184). Similarly, the cheB mutant
of B. subtilis has a normal bias (i.e., the same ratio of CW and
CCW rotation of the flagella as in the wild type). Thus, it is not
hard to imagine that reversal frequency in H. salinarum and B.
subtilis is controlled by the same mechanism, namely, the
amount of CheC bound at the switch. Presumably, in H. sali-
narum, the mechanism by which CheY-P produced by repel-
lents or repellent light would cause increased reversals would
involve inducing increased CheC binding at the switch. A sim-
ilar situation may exist for the spirochetes, which undergo
reversals of motion, except that there the CheC homolog is
CheX, which is smaller than CheC (137).

CheC is not the only substance, however, that affects the
switching frequency. Fumarate also promotes increased
switching frequency in E. coli (17, 155, 175) and also increases
the probability of CW rotation (154) by binding at the flagellar
switch (175). As a central metabolite, fumarate would not be
expected to be a chemotaxis signal whose concentration
changes on a timescale of seconds, as does CheY-P, but might,
instead, somehow be a barometer of the metabolic state of the
cell. However, the way in which it would facilitate cell survival
by reducing bias and switching frequency when present at low
concentration and increasing bias and switching frequency
when present at high concentration is, at this point, unknown.

SIGNAL REMOVAL

One of the unique challenges faced by chemotaxis systems is
the necessity for quick responses (on a timescale of seconds) to
ever changing environments. This is in constrast to most other
two-component signal transduction systems that control gene
expression and act over minutes to hours. To cope with this
problem, the half-lives of CheY-Ps, are brief, shorter than 1
min (38, 66). CheY is thought to actively catalyze autodephos-
phorylation, a process involving several conserved residues
(two aspartates, a lysine, and a threonine) and a Mg?" ion
(133, 205, 222). However, the half-lives still appear to be too
long. To further speed the signal removal, the enteric organ-
isms as well as some other y- and B-proteobacteria express
cheZ. The protein further destabilizes CheY-P (257). In these
organisms, CheZ is essential for chemotaxis. It was puzzling
that most chemotactic bacteria and archaea do not carry a
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cheZ gene. Based on data available for B. subtilis, it is now
apparent that in many if not most of these organisms a com-
bination of CheC, FliY, and/or possibly CheX perform this
function (234, 234a). These three proteins are homologous but
have no sequence similarity to CheZ (Fig. 8). A third mecha-
nism of signal removal has been suggested for S. meliloti and

other a-proteobacteria where an alternative CheY is thought
to act as a phosphate sink and possibly support signal removal
(212). The methods of signal removal for different bacteria are
summarized in Fig. 9. Interestingly, some organisms do not
express a cheZ or cheC homologue or an alternative cheY.
Other means of signal removal in these organisms could in-
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FIG. 9. Means of CheY-P hydrolysis in chemotactic organisms. The tree was generated as described for Fig. 3. Chemotactic organisms that
encode a CheC homolog are highlighted in light gray; dark gray represents organisms that encode a CheZ; black represents organisms that encode
an alternative Che that acts as a phosphate sink; white represents organisms with no known mechanism of CheY-P hydrolysis. V. cholerae encodes
both CheZ and CheC homologs and is therefore indicated by dark and light gray squares.
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clude the presence of a response regulator domain fused to
other chemotaxis components acting as phosphate sink.

CheZ Phosphatase

CheZ is found exclusivly in the - and y-proteobacteria (see
the legend to Fig. 3 for type species). From its limited spread
among bacteria it can be concluded that it evolved relatively
late, and that the original chemotactic organism had other
means of signal removal.

As part of the E. coli chemotaxis system, CheZ is by far the
best studied CheY-P phosphatase and the only one for which
an X-ray structure is available (257). CheZ is localized to the
receptor complexes, in the enteric bacteria, via CheA-short (a
form of CheA that lacks part of the N-terminal sequence,
including the site of phosphorylation [251]) (209). However,
the meaning of this localization is not yet clear, since a mutant
not capable of making CheA-short does not have a chemotac-
tic phenotype (150). At one time, it was thought that enhance-
ment of CheZ activity might be the means by which CheY-P
could be rapidly hydrolyzed following addition of attractant to
generate the excitatory signal. However, CheZ does not appear
to play any excitatory role (108, 210). Studies of fragments of
the protein identified the C terminus of CheZ to be the
CheY-P binding domain (29). However, insight into the mech-
anism of CheZ action remained elusive until the X-ray struc-
ture of CheZ in complex with activated CheY was solved
recently. Based on this structure, it has been proposed that
CheZ residue GIn147 is actively involved in increasing the rate
of CheY-P hydrolysis by positioning and activating a water
molecule in the active site of CheY-P (257).

CheC/FliY/CheX Phosphatase

Most chemotactic bacteria and archaea do not encode a
CheZ homolog and so must cope with the problem of fast
signal removal in some other way. A recent study found that
the flagellar switch protein F1iY in B. subtilis is able to increase
the rate of CheY-P hydrolysis. The C-terminal region of FliY
is homologous to E. coli FliN. The N-terminal domain is ho-
mologous to two other chemotaxis proteins, CheC and CheX
(234). While F1iY is exclusive to gram-positive bacteria, some
spirochetes, and Thermatoga, CheC and/or CheX can be found
in almost all phyla of chemotactic organisms, including some
proteobacteria. Indeed, B. subtilis CheC shares the ability of
FliY to hydrolyze CheY-P (234a). Therefore, conserved resi-
dues between CheC and FlLiY are possibly involved in the
chemistry. Six residues—Asp39, Glu43, Asn46, Serl36,
Glu140, and Asnl43 (following B. subtilis FliY numbering)—
are conserved among these proteins, and any could play a
similar role to residue GInl47 in E. coli CheZ. Interestingly,
the latter three residues are also conserved among CheX pro-
teins, which appear to be truncated versions of CheC. Most
chemotactic bacteria and all chemotactic archaea have a CheC
homolog. Whether the mechanism of dephosphorylation of
CheY-P is similar to that of CheZ will ultimately be shown only
by obtaining an X-ray refraction structure of any of these
proteins in complex with CheY.
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Phosphate Sink

Work on the a-proteobacteria S. meliloti and R. spheroides
suggests a third mechanism of signal removal (174, 212). In
each of these organisms, deletion of at least two CheY ho-
mologs causes a defect in chemotaxis. In S. meliloti, CheY2 is
the main response regulator that interacts with the flagellar
switch and causes the reversal of flagellar rotation. CheY1
does not interact with the switch, although, like CheY2, it is
rapidly phosphorylated by CheA-P. CheY2, however, is capa-
ble of transferring its phosphoryl group back to CheA and
subsequently to CheY1, so that CheY1 may act as a phosphate
sink (212). In R. spheroides this mechanism is more complex,
since this organism contains six cheY genes; some CheY pro-
teins are thought to act as phosphate sinks (174). Since many
chemotactic organisms have more than one cheY, one can
imagine that the phosphate sink mechanism may be wide-
spread. In addition, some organisms do not encode any of the
known signal-removing proteins and, we speculate, may use
response regulator domains fused to other chemotaxis pro-
teins. However, no data suggesting this have yet been reported.

MULTIPLE COPIES OF CHEMOTAXIS GENES

As mentioned above, the E. coli chemotaxis system is simple
in comparison to most other chemotaxis systems. This is be-
cause there is only one copy for each chemotaxis protein. B.
subtilis already proves more complex since partially redundant
proteins like CheW and CheV or like CheC and FliY make
phenotypes less severe and conclusions about them less obvi-
ous (99, 181, 234). However, still more complex systems can be
found. Some organisms contain multiple sets of chemotaxis
genes, some of which may have functions other than control-
ling motility. P. aeruginosa has five clusters of chemotaxis genes
(62, 230). Two of these clusters (I and V) are required for
chemotaxis (100, 146). Another (IV) is required for chemotaxis
by twitching motility (55, 101), which involves extension and
retraction of type IV pili (207). This type of movement is
thought to facilitate movement across surfaces and formation
of biofilms (170); it usually involves rafts of cells rather than
individual cells (147). It seems reasonable that the apparent
redundancy of chemotaxis genes in this organism is due to
genes within a cluster being devoted to a particular function,
such as chemotaxis involving flagella or twitching motility, and
is not actual redundancy.

Another organism with multiple copies of chemotaxis-type
genes is M. xanthus. M. xanthus has two types of motility,
A-motility and S-motility (98, 200). S-motility is homologous to
twitching motility in P. aeruginosa and involves extension and
retraction of type IV pili (231). M. xanthus has nine clusters of
chemotaxis-type genes (14), of which the Frz genes mediate
chemotaxis by controling reversals of (gliding) cells, the Dif
genes are involved in fibril formation (necessary for S-motil-
ity), and the Che4 cluster is also involved in S-motility. How-
ever, another set, the Che3 cluster, affects the entry of M.
xanthus into the developmental program to produce spores,
and the output would appear to be the response regulator
protein CrdA (whose cognate histidine kinase appears to be
CheA3), predicted to be the transcriptional activator for o>*-
dependent promoters (114). Thus, in this case, what must have
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originally been a chemotaxis-type set of genes controlling mo-
tility evolved into a set of genes controlling transcriptional
activation. The main difference between ordinary transcrip-
tional activation and this type might be that the latter would
undergo adaptation so that the time derivative of the input
signal, rather than the magnitude of the input signal itself,
would control transcription. Such an arrangement might pro-
vide for sensitivity to changes over many orders of magnitude,
as in the case for bacterial chemotaxis (41, 54). A detailed
account of the issues involved may be found in reference 14.

The a-proteobacterium R. spheroides has three sets of che-
motaxis genes. cheOp, contains cheY,, cheA,, cheW,, cheR,,
and cheY,. cheOp, contains cheY;, cheA,, cheW,, cheWs,,
cheR,, cheB,, and tlpC. cheOp; contains cheA,, cheR, cheB,,
cheW,, sip, tipT, cheYy, and cheA;. Besides these chemotaxis
genes, there is one encoding a fusion protein of CheBRA and
13 encoding receptors, including 4 cytoplasmic receptors (lack-
ing a membrane-spanning region) and cheY, (www.jgi.doe.gov
/JGI microbial/html/rhodobacter). Deletion of cheA, prevents
aerotaxis, phototaxis, and chemotaxis, but deletion of cheA,
has little effect. Deletion of cheW, has a much bigger effect on
localization (see below) of cheA, at the poles of the cell than
does deletion of cheW;, which marginally affects cheA, local-
ization. CheA2 causes the phosphorylation of CheY4, and
CheY3 facilitates signal temination, possibly acting as a phos-
phate sink (196). CheAl, with its cognate response regulator
CheY5, mediates a repellent (“inverted”) response (196). The
function of the genes in cheOp; is unknown. In this organism,
the response to negative stimuli is to stop (rather than rotate
the single polar flagellum CW, as does E. coli for its peritri-
chous flagella). On stopping, the flagellum goes from helical to
coiled (15). This transition, coupled with rotational Brownian
motion, reorients the bacterium (173) so that the next smooth
swim will take a new direction.

LOCALIZATION OF CHEMOTAXIS PROTEINS

Polar localization of chemotaxis proteins was first explored
in Caulobacter, a natural organism with which to investigate
polarity since it undergoes differentiation in which a stalk cell
produces a swarmer cell with a single polar flagellum that is
made shortly before cell division in every generation (249).
Later, the flagellum is discarded and is replaced by a new stalk
(60). The receptor is located at the pole (6). This expected
finding led to an unexpected one, namely, that the receptors of
E. coli are also located at the poles of the cell (140). This
finding has led to a considerable body of research that has
documented that chemotaxis receptors generally are clustered,
usually at the pole but, for cytoplasmic receptors as in R.
spheroides, at an apparently random place in the cytoplasm (84,
143, 246). The B. subtilis asparagine receptor, McpB (and pre-
sumably the other receptors spanning the membrane) is also
located at the poles of cells (113). However, the significance of
clustering for signal amplification is uncertain, since it was
unaltered in E. coli strains lacking CheR or CheB (138), but
strains lacking CheB are very impaired in sensitivity to attract-
ants, although strains lacking CheR are still very sensitive (108,
210). Moreover, addition of a multivalent ligand that can bind
two receptors simultaneously greatly increases the sensitivity of
heterologous receptors to their ligands, and this sensitivity is
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diminished when other heterologous receptors are deleted (71,
72). Thus, it would appear that clustering of receptors may
facilitate taxis since receptors are close to each other but active
signaling must require a particular arrangement of the recep-
tors, a goal that is hard to achieve when they are fully meth-
ylated.

CONCLUSIONS AND PROSPECTS

One great achievement in our understanding of bacterial
chemotaxis in the 1970s was the discovery of the methylation
system as foundational for bringing about adaptation to stim-
uli. In the 1980s and early 1990s came the discovery of the
two-component system involving phosphotransfer as mediating
excitation. Now, during the past decade, there has been a
growing appreciation of the diversity of chemotactic mecha-
nisms used in the broad sweep of bacteria and archaea. In this
review we have emphasized this diversity. We have acknowl-
edged that many of the principles have been worked out in the
E. coli-S. enterica chemotaxis system and that great progress in
elucidating that system is still occurring. However, it has be-
come clear that the E. coli system is streamlined and lacks or
has significantly modified some basic features of the primordial
mechanism that existed when the bacteria and archaea sepa-
rated during evolution. It seems that many of these features
exist in the B. subtilis mechanism, and the elucidation of this
mechanism has, accordingly, been one of the features of this
review. The processes used to restore behavioral conditions to
their prestimulus conditions have changed the most during the
streamlining that has led to the E. coli mechanism. However,
evolution in other organisms has not stood still, and a lot of
changes in other directions have occurred since the primordial
mechanism was widely used; we have tried to do justice to
these. A lot of information, however, is still at the genome-
sequencing level, and more behavioral, genetic, and biochem-
ical work is needed on these organisms. Some of the most
interesting and unanticipated advances are occurring in re-
search on organisms that have multiple copies of chemotaxis
genes and those that have employed, for controlling develop-
ment, proteins that once had a chemotaxis function. These new
areas, as well as the dynamics of receptor-receptor interactions
in bringing about extreme sensitivity to the slightest changes in
attractant concentrations over many orders of magnitude, are
promising areas of future investigation.

Understanding the structural changes that underlie this re-
markable capability is a major challenge; however, we believe
that the talented cadre of investigators are up to meeting this
challenge. All of these new investigations should serve to make
the study of bacterial chemotaxis as exciting during the next 30
years as it has been during the past 30.
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